

Electronics 1
BSC 113
Summer 2021-2022
Lecture 2
Circuit Variables and Elements
INSTRUCTOR
DR / AYMAN SOLIMAN

> Contents

1) Basic concepts
$>$ The international system of units
$>$ The international system of prefixes
2) Electrical charge
3) Electrical current
4) Voltage
5) Power
6) Energy
7) Circuit elements
$>$ Passive elements
$>$ Active elements
8) Ohm's law and conductance
9) Node, loop, and branch

1. Basic concepts

$>$ The electrical engineering is one of the most important field. First, we need to understand the basic concepts for electrical circuits.

1.1 The international system of units

$>$ Here in this subsection, we will state the standard international (SI) units in electrical part in this course as shown in table.

Quantity	Basic Unit	Basic Unit Symbol
LENGTH	metre	m
MAS5	kilogram	kg
TIME	second	s
TEMPERATURE	kelwin	K
QUANTITY OF MATTER	mole	mol
ELECTRIC CURRENT	ampere	A
LUMINOUS INTENSITY	candela	cd

1.2 The international system of prefixes

$>$ As shown in the following table, the international system of prefixes will be
illustrated.

Multiplier	Prefix	Symbol
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	K
10^{2}	hecto	H
10^{1}	deka	Da
10^{-1}	deci	D
10^{-2}	centi	C
10^{-3}	milli	M
10^{-6}	micro	μ
10^{-9}	nano	N
10^{-12}	pico	P
10^{-15}	femto	F
10^{-18}	atto	A

1.2 The international system of prefixes

SI PREFIX	SI SYMOL
yotta	Y
zetta	Z
exa	E
peta	P
tera	T
giga	G
mega	M
kilo	k
hecto	h
deca	da
deci	d
centi	c
milli	m
micro	$\mathrm{\mu}$
nano	n
pico	p
femto	f
atto	a
zepto	z
yocto	y

SI UNIT CONVERSION FACTOR (STANDARD FORM)	FACTOR $($ POWER	FACTOR LANGUAGE
1 yottametre $=1000000000000000000000000$ metres	10^{24}	septillion
1 zettametre $=1000000000000000000000$ metres	10^{21}	sextillion
1 exametre $=1000000000000000000$ metres	10^{18}	quintillion
1 petametre $=1000000000000000$ metres	10^{15}	quadrillion
1 terametre $=1000000000000$ metres	10^{12}	trillion
1 gigametre $=1000000000$ metres	10^{9}	billion
1 megametre $=1000000$ metres	10^{6}	million
1 kilometre $=1000$ metres	10^{3}	thousand
1 hectometre $=100$ metres	10^{2}	hundred
1 decametre $=10$ metres	10^{1}	ten
1 metre $=1$ metre	$10^{\mathbf{0}}$	one
1 decimetre $=0.1$ metres	10^{-1}	tenth
1 centimetre $=0.01$ metres	10^{-2}	hundredth
1 millimetre $=0.001$ metres	10^{-3}	thousandth
1 micrometre $=0.000001$ metres	10^{-6}	millionth
1 nanometre $=0.000000001$ metres	10^{-9}	billionth
1 picometre $=0.000000000001$ metres	10^{-12}	trillionth
1 femtometre $=0.000000000000001$ metres	10^{-15}	quadrillionth
1 attometre $=0.000000000000000001$ metres	10^{-18}	quintillionth
1 zeptometre $=0.000000000000000000001$ metres	10^{-21}	sextillionth
1 yoctometre $=0.000000000000000000000001$ metres	10^{-24}	septillionth

1 2. Circuit variables

2.1 Electrical charge

\Rightarrow The definition of the electrical charge, is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).
$>$ Its symbols are Q or $\mathrm{q}(\mathrm{t})$.

2.2 Electrical current

$>$ The definition of the electrical current, is the time rate of change of charge, measured in amperes (A). Its symbols are I or $\mathrm{i}(\mathrm{t})$. In addition to the relation between electric current and charge is illustrated as the following:

$$
i=\frac{d q}{d t} \text { and } q=\int_{t_{0}}^{t} i d t \text { where } 1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}
$$

2.2 Electrical current (cont.)

$>$ we found two types in electric current. The first one is DC current which is a current that remains constant with time. The second one is AC current which is a current that varies sinusoidal with time.

2.3 Voltage

$>$ The definition of the electrical voltage difference between two points is the energy or work needed to move unit charge from first point to second point, measured in volts (V).
$>$ Its symbols are V or $\mathrm{v}(\mathrm{t})$.
$>$ In addition to the relation between electric voltage and charge is illustrated as the following:

$$
\mathrm{v}=\frac{\mathrm{d} w}{\mathrm{dq}} \text { where } 1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C} \text {. }
$$

2.4 Power

$>$ The definition of the power, is the time rate of expending and absorbing energy, measured in watts (W).
$>$ Its symbols are P or $\mathrm{p}(\mathrm{t})$.
$>$ In addition to the relation between power and energy is illustrated as the following:

$$
\mathrm{p}=\frac{\mathrm{dw}}{\mathrm{dt}}=\frac{\mathrm{dw}}{\mathrm{dq}} * \frac{\mathrm{dq}}{\mathrm{dt}}=\mathrm{v} * \mathrm{i} \text { where } 1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s} .
$$

2.4 Power (cont.)

$>$ When the current enters through the positive terminal of an element the relation is $p=+v i$ but if enters through the negative terminal of an element the relation is $\mathrm{p}=-\mathrm{vi}($ power absorbed $=-$ power supplied) as shown in figure

The difference between power absorbed and power
supplied

2.5 Energy

$>$ The definition of the energy, is the capacity to do work, measured in joules (J).
$>$ Its symbols are W or $\mathrm{w}(\mathrm{t})$.
$>$ In addition to the relation between power and energy is illustrated as the following:

$$
w=\int_{t_{0}}^{t} p d t=\int_{t_{0}}^{t} v * i d t
$$

2.5 Energy (cont.)

$>$ Example : Calculate the energy were consumed in Two hours when 200 W electric bulb

$$
\begin{gathered}
\mathrm{w}=\mathrm{p} * \mathrm{t}=200 * 2 * 3600=1440 \mathrm{~kJ} \text { is the same } \\
\mathrm{w}=\mathrm{p} * \mathrm{t}=200 * 2=400 \mathrm{~Wh} .
\end{gathered}
$$

- 3. Circuit elements

Circuit elements are the main parts in any electrical circuits and are classified into two types as the following subsections

\square 3. Circuit elements (cont.)

Active Elements

Passive Elements

					$\begin{aligned} & \} \\ & 13 \end{aligned}$	$c \frac{i}{T}$
(a)	(b)	(c)	(d)	(e)	(f)	(s)

- A dependent source is an active element in which the source quantity is controlled by another voltage or current.
- They have four different types: VCVS, cCVS, vCCS, CCCS. Keep in minds the signs of dependent sources.

3.1 Passive elements

> Many components are considered as passive element such as resistor, capacitors, inductors etc...

3.2 Active elements

> Many components are considered as active element such as voltage and current source. We can state the four important dependent type:
\checkmark voltage controlled voltage source
\checkmark current controlled voltage source
\checkmark current controlled current source
\checkmark voltage controlled current source

4. Basic laws and definitions

4.1 Ohm's law and conductance

$>$ Ohm's law states that the voltage v across a resistor is directly proportional to the current i flowing through the resistor.
$>$ That is mean $\mathrm{v} \alpha \mathrm{i}$ where $\mathrm{v}=\mathrm{i} * \mathrm{R}$.
$>$ Where the resistance of an element denotes its ability to resist the flow of electrical current, it is measured on ohms (Ω).

4.1 Ohm's law and conductance

$>$ Where the resistance of any material with a uniform cross-sectional area A depends on A and its length , as shown in figure.
$>$ We can represent resistance as measured in the laboratory, in mathematical form
$R=\rho L / A$,

4.1 Ohm's law and conductance (cont.)

where ρ is known as the resistivity of the material in ohmmeters.
$>$ Good conductors, such as copper and aluminum, have low resistivity, while insulators, such as mica and paper, have high resistivity.

Next table presents the values of for some common materials and shows which materials are used for conductors, insulators, and semiconductors.

Materials	Resistivity	Usage
Copper	$\mathbf{1 . 7 2} \mathbf{N 1 0}^{-8}$	Conductor
Teflon	$\mathbf{3}^{* 10} \mathbf{1 0}^{\mathbf{2}}$	Insulators
Silicon	$\mathbf{6 . 4 * 1 0 ^ { \mathbf { 2 } }}$	Semiconductor
Germanium	$\mathbf{4 7 * 1 0 - \mathbf { 1 }}$	Semiconductor

4.1 Ohm's law and conductance (cont.)

$>$ We have special cases as shown in figure, when an open circuit is found that is mean $\mathrm{R}=\infty$ and when a short circuit is found that is mean $\mathrm{R}=0$.
$>$ On the other hand, conductance is the ability of an element to conduct electrical current, it is measured by moh (v) or Siemens (S) and $\mathrm{G}=\mathrm{i} *$ v. Now we can say $p=v i=i^{2} R=v^{2} / R=v^{2} G=i^{2} / G$.

4.1 Ohm's law and conductance (cont.)

$>$ Example : The essential component of a toaster is an electrical element (a resistor) that converts electrical energy to heat energy. How much current is drawn by a toaster with resistance 10Ω at 110 V ?
$>$ Answer: 11 A.

4.1 Ohm's law and conductance (cont.)

$>$ Example : In the circuit shown in the following figure, calculate the current i , the conductance G, and the power p.

Answer:
$\mathrm{i}=\mathrm{w} / \mathrm{R}=30 / 5^{*} 10^{3}=6 \mathrm{~mA}$
$\mathrm{G}=\mathrm{i} / \mathrm{v}=1 / \mathrm{R}=0.2 \mathrm{mS}$
$\mathrm{P}=\mathrm{v}^{*} \mathrm{i}=180 \mathrm{~mW}$

4.2 Node, loop, and branch

$>$ As shown in the next figure, we will present some definitions:
\checkmark Branch: represents a single element such as a voltage source or a resistor.
\checkmark Node: is a point to connect between two or more branches.
\checkmark Loop: is any closed path in the electrical circuit.

4.2 Node, loop, and branch (cont.)

$>$ Example: Determine the number of branches and nodes in the circuit shown in the following figure. Identify which elements are in series and which are in parallel.

$>$ (a) Since there are four elements in the circuit, the circuit has four branches: 10 $\mathrm{V}, 5 \Omega, 6 \Omega$, and 2 A . The circuit has three nodes as identified in Fig. (a). The 5Ω resistor is in series with the $10-\mathrm{V}$ voltage source because the same current would flow in both. The 6- resistor is in parallel with the 2-A current source because both are connected to the same nodes 2 and 3 .

4.2 Node, loop, and branch (cont.)

$>$ Example: Determine the number of branches and nodes in the circuit shown in the following figure. Identify which elements are in series and which are in parallel.

$>$ (b) Five branches and three nodes are identified in Fig. (b). The 1Ω and 2Ω resistors are in parallel. The 4Ω resistor and $10-\mathrm{V}$ source are also in parallel.

Thank

$y 04 \Longrightarrow$

